与其他技术(例如电感回路,雷达或激光器)相比,使用摄像头进行车速测量的成本效益要高得多。但是,由于相机的固有局限性提供准确的范围估计值,因此准确的速度测量仍然是一个挑战。此外,基于经典的视觉方法对相机和道路之间的外部校准非常敏感。在这种情况下,使用数据驱动的方法是一种有趣的选择。但是,数据收集需要一个复杂且昂贵的设置,以在与高精度速度传感器同步的相机中录制视频,以生成地面真相速度值。最近已经证明,使用驾驶模拟器(例如Carla)可以用作生成大型合成数据集的强大替代方案,以实现对单个摄像机的车辆速度估算的应用。在本文中,我们在不同的虚拟位置和不同的外部参数中使用多个摄像机研究相同的问题。我们解决了复杂的3D-CNN体系结构是否能够使用单个模型隐式学习视图速度的问题,或者特定于视图的模型是否更合适。结果非常有前途,因为它们表明具有来自多个视图的数据报告的单个模型比摄像机特异性模型更好地准确性,从而铺平了迈向视图的车辆速度测量系统。
translated by 谷歌翻译
预训练的语言模型的目的是学习文本数据的上下文表示。预训练的语言模型已成为自然语言处理和代码建模的主流。使用探针,一种研究隐藏矢量空间的语言特性的技术,以前的作品表明,这些预训练的语言模型在其隐藏表示中编码简单的语言特性。但是,以前的工作都没有评估这些模型是否编码编程语言的整个语法结构。在本文中,我们证明了\ textit {句法子空间}的存在,该{语法子空间}位于预训练的语言模型的隐藏表示中,其中包含编程语言的句法信息。我们表明,可以从模型的表示形式中提取此子空间,并定义一种新颖的探测方法AST-Probe,该方法可以恢复输入代码段的整个抽象语法树(AST)。在我们的实验中,我们表明这种句法子空间存在于五个最先进的预训练的语言模型中。此外,我们强调说,模型的中间层是编码大多数AST信息的模型。最后,我们估计该句法子空间的最佳大小,并表明其尺寸大大低于模型的表示空间。这表明,预训练的语言模型使用其表示空间的一小部分来编码编程语言的句法信息。
translated by 谷歌翻译
Process monitoring and control are essential in modern industries for ensuring high quality standards and optimizing production performance. These technologies have a long history of application in production and have had numerous positive impacts, but also hold great potential when integrated with Industry 4.0 and advanced machine learning, particularly deep learning, solutions. However, in order to implement these solutions in production and enable widespread adoption, the scalability and transferability of deep learning methods have become a focus of research. While transfer learning has proven successful in many cases, particularly with computer vision and homogenous data inputs, it can be challenging to apply to heterogeneous data. Motivated by the need to transfer and standardize established processes to different, non-identical environments and by the challenge of adapting to heterogeneous data representations, this work introduces the Domain Adaptation Neural Network with Cyclic Supervision (DBACS) approach. DBACS addresses the issue of model generalization through domain adaptation, specifically for heterogeneous data, and enables the transfer and scalability of deep learning-based statistical control methods in a general manner. Additionally, the cyclic interactions between the different parts of the model enable DBACS to not only adapt to the domains, but also match them. To the best of our knowledge, DBACS is the first deep learning approach to combine adaptation and matching for heterogeneous data settings. For comparison, this work also includes subspace alignment and a multi-view learning that deals with heterogeneous representations by mapping data into correlated latent feature spaces. Finally, DBACS with its ability to adapt and match, is applied to a virtual metrology use case for an etching process run on different machine types in semiconductor manufacturing.
translated by 谷歌翻译
An Anomaly Detection (AD) System for Self-diagnosis has been developed for Multiphase Flow Meter (MPFM). The system relies on machine learning algorithms for time series forecasting, historical data have been used to train a model and to predict the behavior of a sensor and, thus, to detect anomalies.
translated by 谷歌翻译
In the last years, the number of IoT devices deployed has suffered an undoubted explosion, reaching the scale of billions. However, some new cybersecurity issues have appeared together with this development. Some of these issues are the deployment of unauthorized devices, malicious code modification, malware deployment, or vulnerability exploitation. This fact has motivated the requirement for new device identification mechanisms based on behavior monitoring. Besides, these solutions have recently leveraged Machine and Deep Learning techniques due to the advances in this field and the increase in processing capabilities. In contrast, attackers do not stay stalled and have developed adversarial attacks focused on context modification and ML/DL evaluation evasion applied to IoT device identification solutions. This work explores the performance of hardware behavior-based individual device identification, how it is affected by possible context- and ML/DL-focused attacks, and how its resilience can be improved using defense techniques. In this sense, it proposes an LSTM-CNN architecture based on hardware performance behavior for individual device identification. Then, previous techniques have been compared with the proposed architecture using a hardware performance dataset collected from 45 Raspberry Pi devices running identical software. The LSTM-CNN improves previous solutions achieving a +0.96 average F1-Score and 0.8 minimum TPR for all devices. Afterward, context- and ML/DL-focused adversarial attacks were applied against the previous model to test its robustness. A temperature-based context attack was not able to disrupt the identification. However, some ML/DL state-of-the-art evasion attacks were successful. Finally, adversarial training and model distillation defense techniques are selected to improve the model resilience to evasion attacks, without degrading its performance.
translated by 谷歌翻译
Cybercriminals are moving towards zero-day attacks affecting resource-constrained devices such as single-board computers (SBC). Assuming that perfect security is unrealistic, Moving Target Defense (MTD) is a promising approach to mitigate attacks by dynamically altering target attack surfaces. Still, selecting suitable MTD techniques for zero-day attacks is an open challenge. Reinforcement Learning (RL) could be an effective approach to optimize the MTD selection through trial and error, but the literature fails when i) evaluating the performance of RL and MTD solutions in real-world scenarios, ii) studying whether behavioral fingerprinting is suitable for representing SBC's states, and iii) calculating the consumption of resources in SBC. To improve these limitations, the work at hand proposes an online RL-based framework to learn the correct MTD mechanisms mitigating heterogeneous zero-day attacks in SBC. The framework considers behavioral fingerprinting to represent SBCs' states and RL to learn MTD techniques that mitigate each malicious state. It has been deployed on a real IoT crowdsensing scenario with a Raspberry Pi acting as a spectrum sensor. More in detail, the Raspberry Pi has been infected with different samples of command and control malware, rootkits, and ransomware to later select between four existing MTD techniques. A set of experiments demonstrated the suitability of the framework to learn proper MTD techniques mitigating all attacks (except a harmfulness rootkit) while consuming <1 MB of storage and utilizing <55% CPU and <80% RAM.
translated by 谷歌翻译
Building a quantum analog of classical deep neural networks represents a fundamental challenge in quantum computing. A key issue is how to address the inherent non-linearity of classical deep learning, a problem in the quantum domain due to the fact that the composition of an arbitrary number of quantum gates, consisting of a series of sequential unitary transformations, is intrinsically linear. This problem has been variously approached in the literature, principally via the introduction of measurements between layers of unitary transformations. In this paper, we introduce the Quantum Path Kernel, a formulation of quantum machine learning capable of replicating those aspects of deep machine learning typically associated with superior generalization performance in the classical domain, specifically, hierarchical feature learning. Our approach generalizes the notion of Quantum Neural Tangent Kernel, which has been used to study the dynamics of classical and quantum machine learning models. The Quantum Path Kernel exploits the parameter trajectory, i.e. the curve delineated by model parameters as they evolve during training, enabling the representation of differential layer-wise convergence behaviors, or the formation of hierarchical parametric dependencies, in terms of their manifestation in the gradient space of the predictor function. We evaluate our approach with respect to variants of the classification of Gaussian XOR mixtures - an artificial but emblematic problem that intrinsically requires multilevel learning in order to achieve optimal class separation.
translated by 谷歌翻译
Aliasing is a highly important concept in signal processing, as careful consideration of resolution changes is essential in ensuring transmission and processing quality of audio, image, and video. Despite this, up until recently aliasing has received very little consideration in Deep Learning, with all common architectures carelessly sub-sampling without considering aliasing effects. In this work, we investigate the hypothesis that the existence of adversarial perturbations is due in part to aliasing in neural networks. Our ultimate goal is to increase robustness against adversarial attacks using explainable, non-trained, structural changes only, derived from aliasing first principles. Our contributions are the following. First, we establish a sufficient condition for no aliasing for general image transformations. Next, we study sources of aliasing in common neural network layers, and derive simple modifications from first principles to eliminate or reduce it. Lastly, our experimental results show a solid link between anti-aliasing and adversarial attacks. Simply reducing aliasing already results in more robust classifiers, and combining anti-aliasing with robust training out-performs solo robust training on $L_2$ attacks with none or minimal losses in performance on $L_{\infty}$ attacks.
translated by 谷歌翻译
The problem of generating an optimal coalition structure for a given coalition game of rational agents is to find a partition that maximizes their social welfare and is known to be NP-hard. This paper proposes GCS-Q, a novel quantum-supported solution for Induced Subgraph Games (ISGs) in coalition structure generation. GCS-Q starts by considering the grand coalition as initial coalition structure and proceeds by iteratively splitting the coalitions into two nonempty subsets to obtain a coalition structure with a higher coalition value. In particular, given an $n$-agent ISG, the GCS-Q solves the optimal split problem $\mathcal{O} (n)$ times using a quantum annealing device, exploring $\mathcal{O}(2^n)$ partitions at each step. We show that GCS-Q outperforms the currently best classical solvers with its runtime in the order of $n^2$ and an expected worst-case approximation ratio of $93\%$ on standard benchmark datasets.
translated by 谷歌翻译
Anomaly Detection is a relevant problem that arises in numerous real-world applications, especially when dealing with images. However, there has been little research for this task in the Continual Learning setting. In this work, we introduce a novel approach called SCALE (SCALing is Enough) to perform Compressed Replay in a framework for Anomaly Detection in Continual Learning setting. The proposed technique scales and compresses the original images using a Super Resolution model which, to the best of our knowledge, is studied for the first time in the Continual Learning setting. SCALE can achieve a high level of compression while maintaining a high level of image reconstruction quality. In conjunction with other Anomaly Detection approaches, it can achieve optimal results. To validate the proposed approach, we use a real-world dataset of images with pixel-based anomalies, with the scope to provide a reliable benchmark for Anomaly Detection in the context of Continual Learning, serving as a foundation for further advancements in the field.
translated by 谷歌翻译